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The neural origin of the steady-state vergence eye movement error, called
binocular fixation disparity, is not well understood. Further, there has
been no study that quantitatively relates the dynamics of the vergence
system to its steady-state behavior, a critical test for the understanding of
any oculomotor system. We investigate whether fixation disparity can be
related to the dynamics of opponent convergence and divergence neural
pathways. Using binocular eye movement recordings, we first show that
opponent vergence pathways exhibit asymmetric angle-dependent gains.
We then present a neural model that combines physiological properties
of disparity-tuned cells and vergence premotor cells with the asymmetric
gain properties of the opponent pathways. Quantitative comparison of
the model predictions with our experimental data suggests that fixation
disparity can arise when asymmetric opponent vergence pathways are
driven by a distributed disparity code.

1 Introduction

Central to the understanding of human behavior is the understanding of
neural sensorimotor systems that produce the behavior. The eye movement
system is one of the best understood sensorimotor systems in the brain.
Binocular gaze shifts in space are achieved by simultaneous operation of
two classes of eye movement subsystems: conjugate and disjunctive. The
disjunctive system, which is also called the vergence system, maintains op-
tical alignment of both eyes when viewing a target binocularly. For a gaze
shift between targets at different depths, it responds in a manner that re-
duces the resulting binocular disparity, thus maintaining single vision. The
sensorimotor architecture of the vergence system is poorly understood. Ex-
perience from conjugate eye movement system studies suggests that sig-
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Figure 1: An illustration of fixation disparity. The eyes are fixating on a point
(unfilled circle) that is less convergent than the target position (filled circle). The
difference between the target position and the actual fixation point of the eyes
represents the fixation disparity.

nificant understanding of mechanisms of eye movements is possible when
physiological and behavioral aspects of the system are incorporated into
an analytical model that provides accurate predictions of the static and dy-
namic oculomotor responses under a variety of stimulus conditions (Robin-
son, 1981). However, for the vergence system, relatively few attempts (see
Keller, 1981; Mays, 1984; Mays, Porter, Gamlin, & Tello, 1986; Gamlin, Gnadt,
& Mays, 1989; Gamlin & Mays, 1992) have been made to combine physi-
ological and behavioral evidence analytically. Even fewer attempts have
been made to relate steady-state properties to the dynamic properties of
the system. In this article, we seek to relate fixation disparity, a static ver-
gence error, to the dynamics of the vergence system using a model that
combines behavioral properties of the vergence system with the neurophys-
iological characteristics of disparity-tuned sensory and premotor vergence
cells.

The difference between the position of a fixation target and the point
actually fixated by the eyes is called fixation disparity (see Figure 1). The
basis of this ocular misalignment, which has been observed for a century
(see Ogle, Martens & Dyer, 1967), is largely unknown. As a consequence of
fixation disparity, the fixation target is imaged away from the central parts
of the fovea in either one or both eyes, therefore degrading the quality of the
images available for fine stereopsis. Excessive fixation disparity has been
associated with some types of binocular dysfunction, though its use as a
general predictor of binocular stress and dysfunction has been difficult and
at times unsuccessful (see Ogle et al., 1967). One of the main reasons for the
failure of fixation disparity to predict binocular dysfunction lies in the fact
that the neural origin of this error has not been well understood. Existing



Vergence Dynamics Predict Fixation Disparity 1497

control-type models of the vergence system (Ogle et al., 1967; Schor 1979a,
1979b; Hung & Semmlow, 1980; Schor, Robertson, & Wesson, 1986; Saladin,
1986), suggest that fixation disparity results from the leakiness of position
integrators (Schor 1979a, 1979b; Hung & Semmlow, 1980; Schor et al., 1986;
Saladin, 1986). However, most reports in the literature favor a non-leaky
integration in the vergence system (Rashbass & Westheimer, 1961; Zuber &
Stark, 1968; Semmlow, Hung, Horng, & Ciuffreda, 1994), although there has
been an isolated report to the contrary (Pobuda & Erkelens, 1993). Despite
the evidence against leaky integration, these models required the leakiness
to account for the decay of vergence angle in the absence of binocular stim-
ulus (Krishnan & Stark, 1977). However, as suggested by a recent neural
network model (Patel, Ogmen, White, & Jiang, 1997), a nonlinear active
turn-off circuit in conjunction with a nonleaky integrator (nonleaky with
respect to the time-scale of the dynamics) would achieve the same behav-
ioral function. Moreover, this neural network model can explain a much
wider range of vergence dynamic data compared to alternative control-
type models (Patel et al., 1997). Unlike control-type models, this model can
also correlate behavioral responses to underlying neurophysiological com-
ponents of the vergence system. On the other hand, nonleaky integration in
general implies zero position error, that is, zero fixation disparity. As sug-
gested by a previous analysis (Patel et al., 1997), a model with nonleaky inte-
gration coupled with an asymmetry between the dynamics of convergence
and divergence pathways can offer an alternative explanation for fixation
disparity. In this article, we present experimental evidence supporting this
hypothesis.

2 Model Description

2.1 Dynamic Model. A neural network model of horizontal disparity
vergence dynamics (Patel et al., 1997) is shown in Figure 2a. Only those
portions of the model that play an active role during binocular fixation
are shown. Prior to a vergence movement, the binocular target activates a
subset of disparity encoders that signal the presence of a nonzero initial
binocular disparity. Two types of disparity encoders are employed in the
model: convergence encoders and divergence encoders. In the model, we
have used the word encoder instead of disparity-tuned cell because, as men-
tioned in our earlier work (Patel, Ogmen, & Jiang, 1996; Patel et al., 1997),
it is not clear whether the same cells that may be responsible for the per-
ception of depth (Barlow, Blakemore, & Pettigrew, 1967; Poggio, Gonzalez
and Krause, 1988; Roy, Komatsu, & Wurtz, 1992) are also responsible for
the vergence movements. Recent evidence suggests that the disparity cells
responsible for vergence movements might not be directly responsible for
perception of depth (Cumming & Parker, 1997; Masson, Busettini, & Miles,
1997). Functionally, convergence and divergence encoders are equivalent to
near-tuned excitatory and far-tuned excitatory disparity cells, respectively.
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The disparity encoders are topographically ordered in a horizontal direction
such that the central encoder signals zero disparity and encoders positioned
on either side of the zero disparity encoder signal disparity proportional to
their Euclidean distance from zero disparity. The encoders to the right (left)
of the zero disparity encoder signal crossed (uncrossed) disparity. To un-
derstand the operation of the model, consider the case where the eyes are
presented with a target whose images on the two retinas induce a disparity.
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This retinal disparity will generate an activation pattern across the popu-
lation of disparity encoders. For simplicity, we will first consider the case
where the activation pattern consists of the activity of a single encoder, that
is, a spatially localized disparity code. A vergence velocity signal will be
formed based on the sign of the disparity represented by this encoder; a
crossed disparity activates the convergence velocity cell, and an uncrossed
disparity activates the divergence velocity cell. The strength of the inner-
vation of the velocity cell is proportional to the magnitude of the disparity.
The velocity signal drives a pair of vergence position cells in a push-pull
manner. The position cells exhibit nonlinear shunting type membrane dy-
namics (Grossberg, 1988). The convergence position cell projects to medial
rectus motoneurons, and the divergence position cell projects to lateral rec-
tus motoneurons of both eyes. The eye plant is a first-order linear system
(Robinson, 1981; Krishnan & Stark, 1983). The initial disparity therefore re-
sults in a movement of both eyes in opposite directions—that is, a vergence

Figure 2: Facing page. (a) Sensorimotor transformation and push-pull integration
in the neural network model of disparity vergence system. Only the portions of
the model that play a role during binocular fixation are shown. All solid (dotted)
lines represent excitatory (inhibitory) connections. The cells in the convergence
pathways are labeled C, and those in divergence pathways are labeled D. The
graded connectivity between the disparity encoder cells and the velocity cells
represents the sensorimotor transformation and is shown by variable-thickness
lines on both sides of the figure. Thicker lines depict larger synaptic weights.
The convergence (divergence) encoders send excitatory projections to conver-
gence (divergence) velocity cells. CEO (DEO) is a vector of the outputs of the
convergence (divergence) encoders. The numbers under the disparity encoders
represent their position in the map of disparity encoders. The velocity cells
project in a push-pull manner (e.g., convergence velocity cell sends excitatory
projections to convergence position cell, and divergence velocity cell sends in-
hibitory projections to convergence position cell) to position cells, which in turn
project to medial and lateral rectus sections (LR, MR) of the motoneurons/plant
system for each eye. The firing profiles of the vergence velocity cells and the
vergence position cells in the model are shown in rectangular boxes besides the
corresponding cells. The top trace within each box is the simulated vergence step
movement of 2 degrees for which the corresponding firing profiles are obtained.
The bottom trace is the firing rate of the corresponding cell. Upward deflection in
the vergence traces indicate increased convergence and downward deflection
indicates increased divergence. The firing profiles of model neurons are very
similar to those of actual cells found in primate midbrain (Mays, 1984, Mays et
al., 1986). (b) Steady-state vergence error exhibited by the neural network model
shown in a. This error characteristic is obtained by a parameter set that is equal
for cells in both convergence and divergence pathways. A rectangular binary
disparity code is used (see main text). (Adapted Patel et al., 1997)
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movement that reduces the disparity of the target. The reduced disparity
will activate the disparity encoder representing this new value of the target
disparity. This cyclic process will continue until the disparity is reduced to
zero. In other words, at steady state, only the encoder signaling zero disparity
will be active. In summary, if disparity is represented by the activity of a
single disparity encoder, the model will reach steady-state where fixation
disparity is zero.

To facilitate the understanding of the derivation of the static model from
the dynamic model, let us first describe the dynamic model shown in Fig-
ure 2a in simple mathematical terms. The vergence output (VO), defined as
the difference between the angle of horizontal rotation of the two eyes, can
be simply written as:

VO(t) = F(CEO,DEO,LR,MR, t) (2.1)

where F is some nonlinear function that represents the entire vergence feed-
back system, CEO (DEO) is a vector of the outputs of the convergence (di-
vergence) encoders, LR (MR) is the output to the motoneurons innervating
lateral (medial) rectus muscles of both eyes, and t is time.

Let us define the two subtypes of mutually exclusive vergence outputs:

VOC(t) = FC(CEO,LR,MR, t) (2.2)

VOD(t) = FD(DEO,LR,MR, t) (2.3)

where VOC (or convergence) is the vergence position when DEO is zero,
VOD (or divergence) is the vergence position when CEO is zero and, FC
and FD are some nonlinear functions. In otherwords, convergence move-
ment is induced by activation of the sensorimotor pathways innervated by
the convergence encoders, and divergence movement is induced by activa-
tion of the sensorimotor pathways innervated by the divergence encoders.
Notice that due to the push-pull integration of the vergence velocity sig-
nals, these two functionally separate movements share common physical
pathways.

Because the sensory and motor components are arranged in a feedfor-
ward cascade manner, we assume that for each type of movement, the sen-
sory and motor components are functionally separable then,

VOC(t) = FCS(CEO, t) ∗ FCM(CV,LR,MR, t) (2.4)

VOD(t) = FDS(DEO, t) ∗ FDM(DV,LR,MR, t) (2.5)

where FCS (FDS) and FCM (FDM) are sensory and motor functions for
convergence (divergence) and CV (DV) is the output of the convergence
(divergence) sensory component.

When convergence and divergence movements are induced simultane-
ously by a distributed disparity code, an equilibrium can only be reached
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if both movements are equal in magnitude. In this case of simultaneous
activation, if we define the vergence imbalance as

VI(t) = VOC(t)− VOD(t), (2.6)

then at equilibrium (steady state) we have

VI(infinity) = 0. (2.7)

2.2 Fixation Disparity Simulated from the Dynamic Model. Previous
studies on disparity-sensitive neurons have generally found cells that have
broad as opposed to binary (on-off) tuning functions (Barlow et al., 1967;
Roy, Komatsu, & Wurtz, 1992; Gonzalez, Relova, Perez, Acuna, & Alonso,
1993; Wagner & Frost, 1993). This implies that a given target disparity ac-
tivates more than one disparity encoder, i.e. a spatially distributed code.
Further, in humans, it has been proposed that vergence control is based on
a population code formed by a pool of disparity tuned cells (Mallot, Roll,
& Arndt, 1996; Patel et al., 1997). The optics of the eye cause the image of
a visual point to spread on the retina (see Charman, 1991). This, coupled
with cross-correlation of images from the two eyes (Stevenson, Cormack,
& Schor 1994), suggests that even small targets (∼2–4 arc-min) would gen-
erate a spatially distributed disparity code. As a consequence of the broad
tuning property of disparity cells, binocular disparity due to a target would
be coded in a distributed manner. In our model, as a result of the dispar-
ity spread, both convergence and divergence disparity encoders will be
excited at steady state. This simultaneous activation of convergence and
divergence disparity encoders will result in simultaneous activation of con-
vergence and divergence velocity cells. An equilibrium will be achieved
when the convergence and divergence motor activity due to simultane-
ous activation of convergence and divergence velocity cells balances each
other. The displacement of the centroid of the disparity spread relative to
the zero disparity encoder is then the fixation disparity. If the disparity code
is perfectly symmetric and the convergence and divergence pathways are
also perfectly symmetric for all vergence angles, then the fixation disparity
is zero for all those vergence angles. On the other hand, for a symmetric
disparity code, any asymmetry in convergence and divergence pathways
(sensory or motor or both components) would result in a nonzero fixation
disparity. As shown in Figure 2b, the neural network model, when simu-
lated by a rectangular disparity code, exhibits a nonlinear steady-state error
function with respect to vergence angle. A rectangular disparity code can be
formed when a set of cells within a topographic map of cells fires equally
in response to a given input. Normally, in a distributed sensory code, the
firing pattern as a function of cell position in the topographic map would
be symmetric and decreasing (e.g., gaussian) around the cell firing maxi-
mally. However, the assumption of a rectangular code greatly simplifies the
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steady-state analysis without losing generality. The steady-state vergence
error function shown in Figure 2b comes as a result of asymmetry in dy-
namics generated by the nonlinear push-pull integration architecture. We
also tested a gaussian and a triangular disparity code and found that the
qualitative nature of the steady-state vergence error function was similar to
that shown in Figure 2b.

2.3 Static Model. In order to write a simple analytical formula for fix-
ation disparity, a simplified form of the neural network model is derived
(see Figure 3). The original neural network model and its simplified ver-
sion will be hereafter called dynamic vergence model and static vergence
model, respectively. We now consider the static model shown in Figure 3.
In the nervous system and the dynamic model, disparity is encoded by the
activities of a discrete set of neurons. To simplify the analysis, in the static
model we use a continuous variable (z) to represent disparity. This simplifi-
cation is justified if one considers that the set of disparity encoders contains
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a large number of neurons. A consequence of this simplification is that the
discrete synaptic weights between the disparity encoders and velocity cells
are replaced by continuous functions (Fc(z) and Fd(z)) in the static model.
Because we are interested in the origin of fixation disparity, our analysis is
restricted to the vergence system and assumes that the lens accommodation
system is functionally in an open-loop condition.

We use a binary rectangular disparity code to illustrate the principles of
our model. The aggregate sensory output from crossed and uncrossed sides
is determined by the spatial extent n and location of the disparity spread (p
and q) generated by the target (see Figure 3). Note that p and q represent the
disparity spread relative to an absolute disparity and should not be confused
with absolute disparity represented by z. In ideal steady-state condition, the
absolute disparity around which they are defined is 0. The disparity encoder
for disparity z projects to velocity cell with a synaptic weight represented
by F(z). If this cell is active, its synaptic effect will be given by F(z), and
if it is inactive, its postsynaptic effect will be zero. Because velocity cells
summate their inputs, the output of divergence (Sd(z)) and convergence
(Sc(z)) velocity cells can be written as

Sd =
∫ −q

0
Fd(z)dz and Sc =

∫ p

0
Fc(z)dz, (2.8)

where z is the disparity, Fd and Fc are sensorimotor transformation functions
for divergence and convergence pathways, respectively, and integration (as

Figure 3: Facing page. Static vergence model. The lower part of the figure shows
an example of a disparity code formed by cross-correlation of monocular activity
that is induced by a white line target (consider one dimension as indicated by
a horizontal dotted line). The horizontal axis represents a mapping of visual
space onto a line of neurons. The fulcrum represents the zero disparity point.
The horizontal line extending in the z direction from the fulcrum represents
a continuous array of horizontal disparity encoders. The negative (positive)
z-axis represents divergence (convergence) encoders. The disparity encoders
activated by the disparity spread of the target are shaded in gray. The points p
and q represent the end points of the disparity spread, and n is the total extent of
the spread. The sensory contribution of each active divergence and convergence
disparity encoder is represented by Fd(z) and Fc(z), respectively, where z denotes
disparity (the position in the array of horizontal disparity encoders). Sc and Sd

are the output of vergence velocity cells (C and D). The gains of divergence and
convergence motor controllers are represented by Gd(V) and Gc(V). The steady-
state vergence angle is denoted by V, and the vergence imbalance for that angle,
R, is defined as the difference between the divergence and convergence motor
outputs Md and Mc, respectively, and is zero at steady state The eye plant is not
shown but is assumed to be a first-order linear system, and therefore at steady
state, its contribution is just a constant gain factor.
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opposed to summation) is used to take into account the continuous nature of
z. Sc and Sd correspond to CV and DV in equations 2.4 and 2.5. The functions
that relate Sc and Sd to z correspond to FCS and FDS in equations 2.4 and 2.5.
A sensorimotor transformation function transforms a given sensory variable
to a motor variable. In our case, the sensory variable is target disparity and
motor variable is a correlate of vergence velocity.

Although the vergence position cells in the dynamic model integrate their
inputs nonlinearly over the entire range of vergence movements, for a small
vergence movement (small-signal linearity), the temporal integration of the
output of the velocity cells by the vergence position cells can be considered
linear. Thus, at steady state only a gain that depends on the initial vergence
angle (the large signal) relates the output of the velocity cells to the output of
the position cells. Further, the eye plant is also linear; thus, at steady state, it
is the final gain stage in the vergence pathway. Therefore, the experimentally
measured linear relationship between target disparity and the velocity of
the vergence movement for at least the±2 degree disparity range (Rashbass
& Westheimer, 1961) implies a linear relationship between target disparity
and the output of the velocity cells in our model (see the appendix for a
formal derivation). We therefore choose the functions Fd and Fc to be linear
functions of z,

Fd(z) = Kdz and Fc(z) = Kcz, (2.9)

where Kd and Kc are defined as divergence and convergence sensory gains,
respectively. In the dynamic model, these gains are represented by the
weights of the crossed and uncrossed disparity signals as they feed into the
corresponding velocity cells. Therefore, in the dynamic vergence model, the
sensorimotor transformation is performed by the vergence velocity cells.

Substituting equation 2.9 in equation 2.8, we obtain

Sd = Kdq2

2
and Sc = Kcp2

2
. (2.10)

The steady-state outputs Md and Mc of divergence and convergence mo-
tor controllers can then be calculated as

Md = SdGd(V) = Kdq2Gd(V)
2

and Mc = ScGc(V) = Kcp2Gc(V)
2

, (2.11)

where V is the steady-state vergence angle. Gc(V) and Gd(V) are defined
as angle-dependent convergence and divergence motor gains respectively,
and, correspond to FCM and FDM in equations 2.4 and 2.5. Mc and Md cor-
respond to VOC and VOD in equations 2.2 and 2.3 when the pathway down-
stream of the vergence position cells is assumed to be linear. Although the
relationship of the steady-state output of the motor controllers is quadratic
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in the parameters of the disparity spread (p and q), the relationship be-
tween disparity z and the velocity of small vergence movement (under
most dynamic conditions) remains linear. As shown previously (Patel et
al., 1997), the dynamic vergence model exhibits angle-dependent variable
gains during convergence and divergence movements. The exact nature of
the variable gains as a function of angle primarily depends on the parame-
ters defining the membrane characteristics of the vergence position cells in
the dynamic model.

As indicated in Figure 3, the vergence imbalance R(V) (same as VI in
equation 2.6) is calculated as

R(V) = Mc −Md = 1
2

[Kcp2Gc(V)− Kdq2Gd(V)]. (2.12)

The fixation disparity E(V) at a given angle V, specifically for a binary
disparity code, is

E(V) = p− q. (2.13)

At steady state, we have R(V) = 0 (same as equation 2.7) and for a rectangu-
lar binary disparity code p+q = n; hence, we can rewrite equations 2.12 and
2.13 in variables p and n. By eliminating p from the rewritten equations 2.12
and 2.13

E(V) = n
(

1− γ (V)
1+ γ (V)

)
, (2.14)

where

γ (V) =
√

KcGc(V)
KdGd(V)

. (2.15)

If p and q are equal at equilibrium, then the fixation disparity is zero. If q is
larger (smaller) than p, the eyes are overconverged (underconverged).

To illustrate how KcGc(V) and KdGd(V) can be determined experimen-
tally, consider a time instant t during an open-loop or disparity clamped
convergence movement. Let the average target disparity be denoted by ds.
Let the disparity spread be rectangular with a symmetrical spread of n/2 on
both sides of ds. Because the disparity input is fixed or clamped in time, the
corresponding fixed or steady-state output of the convergence velocity cell

would be nKcds (by using Sc =
∫ ds+ n

2
ds− n

2
Kczdz).

Because the position cells are nonleaky integrators and can be considered
linear for a small range of vergence angles, the vergence angle, which is the
output of the convergence motor controller, would be nKcdsGc(V)t (by using
Mc =

∫ t
0 nKcdsGc(V)dt; assume initial convergence is zero). Let us define the

product KcGc(V), which linearly relates the output convergence angle to the
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input disparity as the sensory motor gain for the convergence pathway. The
velocity of the convergence movement would therefore be nKcGc(V)ds. Be-
cause the relationship between the magnitude of ds and the experimentally
measured velocity of the corresponding open-loop convergence movement
is linear for small movements, the slope of this relationship can be used as an
approximation for9KcGc(V)where9 is a constant that includes the gain of
the pathway downstream of the vergence position cells. If we assume that9
is similar for convergence and divergence movements, then the ratio of the
slopes of the relationship between ds and the velocity of the open-loop ver-
gence movement for convergence and divergence movements can be used
to approximate the ratio of KcGc(V) to KdGd(V), respectively. For the pur-
pose of forming the ratio of open-loop convergence to divergence velocity,
the open loop vergence velocity measurements can further be replaced by
peak vergence velocity measurements (Semmlow et al., 1994; Hung, Zhu,
& Ciuffreda, 1997).

In summary, quantitative analysis of the static vergence model therefore
suggests a linear relationship between fixation disparity, E(V) and a func-
tion, λ(V), of the ratio of convergence and divergence sensory motor gains
where

λ(V) = 1− γ (V)
1+ γ (V) . (2.16)

Hence, if fixation disparity is a result of asymmetry between convergence
and divergence dynamics, then a strong correlation should exist between
E(V)andλ(V). This prediction was tested experimentally by a simple staircase-
pulse paradigm (see Figure 4a).

3 Methods

Five subjects (LFH, JCK, VTA, NYN, and HNG) participated in this study
voluntarily. All the subjects were emmetropic. All had at least 20/20 visual

Figure 4: Facing page. (a) The stimulus paradigm used in our experiments. Up-
ward deflection in the stimulus trace represents increased convergence demand.
The dotted horizontal lines represent the three pedestal demands used in the
experiments. (b) A typical vergence recording in our experiments. The right
and left eye position signals are shown in the top two traces (RE, LE; sampling
rate 60 Hz). The unfiltered vergence signal (RV) is obtained by subtracting RE
from LE. The filtered vergence signal (FV) is obtained by digitally low-pass fil-
tering RV with a cut-off frequency of 5 Hz. The vergence velocity signal (VV)
is computed by differentiating FV. The bottom trace shows the stimulus with
each step in the paradigm corresponding to a 2 degree symmetric vergence de-
mand (except a 1 degree first step during staircase). Upward deflection indicates
increased convergence demand.
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acuity with normal binocular vision. Horizontal eye movements of both
eyes were measured with a pair of dual Purkinje-image eye trackers (Crane
& Steele, 1978). In a dark room, using the Badal optical systems of the sta-
bilizing attachments to the eye trackers, the subject viewed a pair of bright
vertical lines (9 degrees in length and 0.35 degree in width; 0.56 candelas
per square meter), one presented to each eye on separate monitors with
dark background via mirrors positioned in front of the eye trackers. Each
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monitor was placed at a distance of 1 m from the exit pupil of the corre-
sponding eye tracker. During target viewing, the subject rested his or her
chin on a chin rest, and head movements were restricted using a forehead
support. A Macintosh II computer controlled the stimulus display and col-
lected data at a sampling rate of 60 Hz per channel, using a 12-bit A/D
converter. Two D/A channels were used to map the current stimulus posi-
tion on each screen. These mapped signals were also recorded along with the
eye movement signals. All data were analyzed using the data analysis pack-
age AcqKnowledge (BIOPAC Systems Inc.). Instead of pinhole viewing, we
used a low-luminance, low-spatial-frequency target that greatly reduces the
accommodative gain (Campbell, 1954; Johnson, 1976). It can be shown that
as far as the relationship between fixation disparity and vergence demand
is concerned, a reduction in accommodation gain of a log unit is effectively
the same as opening the accommodative control loop (Schor, 1992).

One at a time, the target on each monitor was initially aligned to force
the corresponding eye to look straight ahead. This alignment was achieved
by placing a rectangular grid close to the subject’s viewing eye. The target
was adjusted (vertically and horizontally using keyboard) until the subject
aligned the center of the target with the center of the grid. After this align-
ment procedure was completed for both eyes, the grid was removed from
the optical path, and the subject was asked to fuse the targets. In case the sub-
ject had vertical phoria, an additional vertical adjustment was performed
on one of the two targets until fusion was established. The initial monocular
alignment that resulted in binocular viewing at 0 degree (parallel eyes) was
fixed during all subsequent sessions. The distance of the display monitors
was moved from 1 m (physical) to 4 m (optical) by placing a convex lenses
of 0.75D in the optical path of each eye. Due to the haploscopic viewing in
our experiments, the vergence demand can be manipulated independent of
the constant accommodation demand.

Calibration of the eye tracker, conducted in each session of the experi-
ments, was accomplished by presenting a monocular target at different fixa-
tion directions for each eye and recording the related eye movement. Based
on the eye tracker calibration, the signal recorded from each eye tracker
was converted to eye position. The vergence response was then computed
by subtracting the two eye position signals (see Figure 4b). Since vergence
responses are attenuated by 40 dB around 4 Hz (Zuber & Stark, 1968), the
vergence signal was digitally low-pass-filtered at 5 Hz (see Figure 4b).

In the experiment, vergence demand was toggled between convergence
and divergence around a pedestal (or average) demand using three 2 de-
gree peak-to-peak pulses of 5 seconds (see Figure 4a). Three pulses were
used for purposes of averaging to improve the signal-to-noise ratio of the
vergence signal. The duration of 5 sec was used to avoid adaptive effects
(Sethi, 1986). Three pedestal convergence demands were used in random
order: 2, 5 and 8 from a 0 degree demand, which represents a parallel angle
for the two eyes. A staircase paradigm comprising multiple 2 degree steps
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was used to achieve each pedestal demand. For 2 and 8 degree pedestal
demand, the first step was 1 degree instead of 2 degrees, as shown in the ex-
ample in Figure 4a. The duration of each step in the staircase was 5 seconds.
The vergence velocity was computed by differentiating the filtered vergence
signal (see Figure 4b). Positive (negative) velocity was assigned to conver-
gence (divergence) movement. The fixation disparities at various demands
were obtained from the staircase response generated during the stimula-
tion of 8 degree pedestal demand. The fixation disparity was computed as
the difference between the demand and the average vergence angle dur-
ing the last 2 seconds of the step. Positive (negative) fixation disparity was
assigned to underconvergence (overconvergence). The fixation disparity at
pedestal demand of 2 degrees was computed by averaging the disparities
at demands of 1 and 3 degrees. Similarly averaging of fixation disparities at
7 and 9 degrees pedestal demands was used to obtain the fixation disparity
at pedestal demand of 8 degrees. About 10 minutes of rest was introduced
between tests at different demands. Because many researchers have shown
that saccades facilitate vergence movements (Enright, 1986; Zee, Fitzgib-
bon, & Optican, 1992; Wick & Bedell, 1992), care was taken to separate and
analyze only pure-vergence movements. Unfiltered responses for which a
saccade (less than 10 degrees per second or amplitude more than 0.3 degree)
occurred in either eye between the onset of stimulation and 33 msec (two
samples) after peak vergence velocity occurred were rejected from further
analysis. Each subject was tested twice, thus providing a maximum of six
pulses per pedestal demand for subsequent data analysis.

4 Results and Discussion

4.1 Dynamic Asymmetry in the Vergence System. We show the exis-
tence of dynamic asymmetry, which is characterized by a pedestal demand-
dependent difference in convergence and divergence velocities. Figure 5
shows typical vergence eye movement recordings for one subject (LFH) at
pedestal demands of 2, 5, and 8 degrees. The asymmetry in peak conver-
gence and divergence velocities increases as pedestal demand increases. All
subjects showed this increase in asymmetry with increase in pedestal de-
mand; however, the magnitude of differences between convergence and di-
vergence peak velocities was different. The differences between occurrence
times of peak convergence and divergence velocities were nonsystematic
with respect to the pedestal demand. To analyze the dynamic asymme-
try quantitatively, repeated measures analysis of variance (ANOVA) was
performed on the peak convergence and divergence velocities and their
occurrence times.

The average convergence and divergence peak velocities for all subjects
are shown in Figure 6a. A three-way repeated measures ANOVA of the
data in Figure 6a indicates that an increase in pedestal demand results
in a significant increase in the difference between peak convergence and
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Figure 5: Vergence eye movement data from subject LFH. The left column shows
vergence position traces, and the right column shows the corresponding com-
puted vergence velocity traces. The stimulus is a 2 degree vergence step on a
pedestal demand. The corresponding pedestal demand is indicated in each box
containing position traces. Upward (downward) deviation in position traces
indicates increased convergence (divergence). Upward (downward) deviation
in velocity traces indicates positive (negative) vergence velocity. The arrows in-
dicate the onset of the convergence or divergence step stimulus. The position,
velocity, and timescales are the same for all panels. The position and velocity
traces are aligned to obtain the overlap shown in the figure.
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divergence velocities (F[1, 8] = 1.1, p = .28 at 2 degrees; F[1, 8] = 38.8,
p = .004 at 5 degrees; F[1, 8] = 106.9, p = .0005 at 8 degrees). Furthermore,
ANOVA also indicates a strong dependence of peak divergence velocity
on pedestal vergence demand (F[1, 8] = 22, p = .01 between 2 and 5 de-
grees; F[1, 8] = 47.1, p = .001 between 2 and 8 degrees; F[1, 8] = 17.6,
p = .02 between 5 and 8 degrees) but little effect of pedestal demand on
peak convergence velocity (F[1, 8] = .23, p = .51 between 2 and 5 degrees;
F[1, 8] = .15, p = .56 between 2 and 8 degrees; F[1, 8] = .008, p = .8
between 5 and 8 degrees). These results suggest some form of motor non-
linearity in the vergence system. Similar dependence of prior vergence an-
gle on short-latency vergence movements induced by radial optic flow has
been recently reported (Yang, Fitzgibbon, & Miles, 1998). Their data also
indicate that the effect of prior vergence angle on convergence is different
from that on divergence. These results suggest that vergence velocity de-
pends on its prior angle and may partly explain why comparisons between
convergence and divergence peak velocities have varied idiosyncratically
between past studies (Zuber & Stark, 1968; Krishnan & Stark, 1977; Schor
et al., 1986; Erkelens, Steinman, & Collewijn, 1989; Hung et al., 1997; Zee et
al., 1992).

4.2 Is Asymmetry in Vergence Dynamics Due to Fixation Disparity?
One might expect an effect of pedestal demand on vergence velocity due
to the presence of fixation disparity. The average fixation disparity at vari-
ous angles for all subjects is shown in Figure 6b. At the pedestal demands
tested in our experiment, all the subjects exhibited an increase in undercon-
vergence with an increase in pedestal demand. Because of fixation disparity,
a symmetrical convergence-divergence pulse demand would stimulate the
vergence system asymmetrically (see Figure 7a inset). However, a fixation
disparity should affect both the convergence and divergence peak veloci-
ties. In contrast to this expectation, the data in Figure 6a clearly show that
only divergence velocity is affected by the pedestal demand. To investigate
the possibility further, the stimulus pulses, which were ±1 degree around
all pedestal demands (i.e., 2 degree step), were corrected for each subject
based on the corresponding fixation disparities. As an example of correc-
tion, for a 2 degree pedestal demand, assume that the fixation disparity
represents a 0.5 degree of underconvergence. An additional 1 degree con-
vergence demand would then create an instantaneous convergence dispar-
ity step of 1.5 degree (corrected convergence step) and, a 1 degree diver-
gence demand would create an instantaneous divergence disparity of 0.5
degree (corrected divergence step). In our experiments, the corrected con-
vergence (divergence) step size was computed by adding (subtracting) the
fixation disparity at the lower (upper) amplitude of the pulse demand. As
shown in Figure 7a, the magnitude of the corrected stimulating step for
convergence (divergence) increases (decreases) with an increase in pedestal
demand. The corresponding changes in vergence velocity (see Figure 6a)
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are opposite to the predictions of the open-loop relationship between dis-
parity and vergence velocity (Rashbass & Westheimer, 1961), which sug-
gests that the magnitude of vergence velocity should increase with in-
creases in stimulating step size. This indicates that the effect of pedestal
demand on vergence velocity cannot be explained by the corresponding
changes in fixation disparity. Our analysis also indicates that pedestal ver-
gence demand does not affect the time at which peak convergence veloc-
ity and peak divergence velocity occur, thus ruling out the possibility of
pedestal demand-dependent changes in reaction time within the vergence
system.
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4.3 Is Fixation Disparity Due to Asymmetry in Vergence Dynamics?
We tested the quantitative relationship between E(V) and λ(V) as predicted
by the static vergence model. Due to the small-signal linearity exhibited by
the vergence system around a given pedestal demand (Rashbass & West-
heimer, 1961), γ (V) during a small vergence step response (∼ ±2 degrees)
is approximated by:

γ (V) ≈

√√√√√√√
Peak convergence velocity around V/

Corrected convergence step input

Peak divergence velocity around V/
Correctred divergence step input

. (4.1)

Figure 7b shows the computed sensory motor gains for convergence and
divergence pathways. A three-way repeated measures ANOVA indicates a
significant difference between convergence and divergence gains (F[1, 4] =
11.9, p = .03). The magnitude of average divergence gain increases with an
increase in pedestal demand, while the convergence gain decreases slightly,
as expected for subjects who exhibit underconvergence.

To determine the relationship between fixation disparity and vergence
asymmetry, γ (V) was computed from the data shown in Figures 6a and
7a using equation 4.1. λ(V) was computed from γ (V) using equation 2.16.
Standard error propagation techniques (Bevington, 1969) were used to trans-
form standard error estimates in all calculations. Figure 8a shows the lin-
ear relationship between λ(V) and fixation disparity E(V) for all subjects.

Figure 6: Facing page. Peak convergence and divergence velocities and fixation
disparities. The symbols for subjects are same in all subsequent figures and are
shown in b. (a) Average peak convergence and divergence velocities and their
relationship with the pedestal convergence demand for five subjects. The max-
imum standard error (the bar shown in the upper left column of each panel)
in velocity for any subject was 0.96 degree per second for convergence velocity
and 1.37 degrees per second for divergence velocity. The number of observations
ranged from two to six. (b) Average fixation disparities for various step demands
within a staircase paradigm. Positive values on the y-axis indicate underconver-
gence. The largest staircase, which consisted of a 1 degree first step, followed by
four consecutive 2 degree steps, is generated when using an 8 degree pedestal
demand. Note that the 8 degree pedestal demand is obtained by toggling the
three pulses between 7 and 9 degree demands. The fixation disparity values for
2 and 8 degree demands are interpolated by averaging the fixation disparities
from corresponding neighboring demands. For example, the fixation disparity
for 2 degree demand is the average of fixation disparities at 1 and 3 degree
demands. The maximum standard error (bar shown in upper left column) in
fixation disparity for any subject was 0.024 degree. The number of observations
ranged from two to six.
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Notice also that the gains for convergence and divergence are very similar
for the lowest pedestal demand (see Figure 7b). As shown in Figure 8a,
the fixation disparity for four out of five subjects is very close to zero at
the lowest demand, thus supporting the prediction of the static vergence
model that relates zero error to perfect symmetry (λ(V) = 0). The fifth sub-
ject (JCK) shows a small bias that may be due to a constant physiological or
anatomical error with respect to the optical axis. Figure 8a also shows the
nature of intersubject as being primarily noninteracting. Hence, our results
strongly suggest that fixation disparity arises from an asymmetry between
the dynamics of convergence and divergence pathways when stimulated
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Figure 8: Relationship between fixation disparity E(V) and λ(V) for five sub-
jects. Positive fixation disparity indicates underconvergence. Least-square linear
regression lines are fit for each subject using data from three pedestal demands.

by a disparity spread. An exceptional feature of our explanation is that it
does not require a leaky position integrator in the vergence system, illustrat-
ing that steady-state errors can arise in nonleaky negative feedback neural
control systems.

4.4 Fixation Disparity and Closed-Loop Accommodation. Most clini-
cal fixation disparity measurements are obtained under a closed-loop ac-
commodation condition (Ogle et al., 1967); therefore, it is necessary to com-
ment on the influence of accommodation upon fixation disparity and how
it relates to the model presented here. It has been previously shown that

Figure 7: Facing page. Asymmetric stimulation and sensory motor gains. (a) The
stimulating step sizes at various pedestal demands after correcting for corre-
sponding fixation disparities. Recall that the uncorrected step size is 2 degrees
for convergence and divergence movements. The inset illustrates the asym-
metric stimulation induced by a symmetric external stimulus (demand) in the
presence of fixation disparity. The dotted line is the vergence angle for the cor-
responding demand shown in solid lines (pulse). The difference between the
solid and dotted lines is the fixation disparity. The up (down) arrow indicates
the actual convergence (divergence) step input to the vergence system. (b) Aver-
age sensory motor gains of convergence and divergence pathways as a function
of pedestal demand for five subjects. The convergence (divergence) gains are
computed using the numerator (denominator) under the square-root sign of
equation 4.1. The error bars in all figures represent ±1 standard error.
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the slope of the relationship between fixation disparity and vergence de-
mand is modified when accommodation operates in open- versus closed-
loop condition. Semmlow and Hung (1979) have shown that the slope of
fixation disparity curve becomes shallower when accommodation operates in
open-loop compared to closed-loop condition, and their data are consistent
with current models of accommodation and vergence (Hung & Semmlow,
1980; Schor, 1992). Contrary to Semmlow and Hung’s data, Hessler, Pick-
well, and Gilchrist (1989) have shown that the slope of fixation disparity
curve becomes steeper when accommodation operates in open-loop com-
pared to closed-loop condition. Regardless of the actual sign of the change
in slope, one can determine the fixation disparity curve under a closed-loop
accommodation condition from that under the open-loop accommodation
condition by adding a term,

FD(V,A) = E(V)+ αV + βA+ δ, (4.2)

where α represents the change in slope of the fixation disparity curve from
the closed-loop to open-loop accommodation condition, β represents the
shift in fixation disparity curve due to accommodation, δ is a constant bias,
and A is the accommodative demand. Note that the above analysis is ap-
proximate, and it assumes linear interactions between the accommodation
and the vergence systems, as suggested by current models of accommoda-
tion and vergence (Hung & Semmlow, 1980; Schor, 1992). Ogle et al. (1967)
showed that for many subjects, the fixation disparity curves did not merely
shift but also changed shapes when accommodation changed from far to
near and vice versa. This phenomenon cannot be explained by linear inter-
actions of vergence and accommodation and points to a severe limitation of
existing models of accommodation and vergence. Further, Wick and Joubert
(1988) have shown that blur affects fixation disparity in a highly nonlinear
way. A more formal and accurate analysis based on our model requires a
complete neural network model of accommodation and vergence.

5 Other Factors Affecting Fixation Disparity

Several vergence parameters other than those considered in our model are
also shown to influence fixation disparity. Vergence adaptation, resulting
from prolonged binocular viewing, is known to reduce fixation disparity
(Schor 1979a, 1979b; Carter, 1980; Schor, 1980). After vergence adaptation,
the fixation disparity at certain demands has been shown to be correlated
with the decay of vergence in darkness (Schor et al., 1986). Proximal cues
also influence the magnitude of fixation disparity (North, Henson, & Smith,
1993). Viewing distance in some cases alters the form of fixation disparity
in the same subjects (Ogle et al., 1967; Kruza, 1993). Contrary to the results
of Palmer and von Noorden (1978), heterophorias measured at near dis-
tances are shown to be correlated with fixation disparity (Schor, 1983). Dark
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vergence is also known to have correlation with fixation disparity (Kruza,
1994). However, since fixation disparity is observed under conditions that
eliminate (or keep fixed) the aforementioned parameters (i.e., in the ab-
sence of adaptation, for stimuli without proximal cues, when accommoda-
tion input and viewing distance are kept constant), we suggest that these
are modulatory effects, rather than being the basic neural origin of fixation
disparity. These factors may affect fixation disparity indirectly via changes
in vergence dynamics. Future work can assess the relative contribution of
these modulatory factors in determining vergence dynamics and fixation
disparity.

Summary

As opposed to an explanation of fixation disparity based on control-type
models of the vergence system, our explanation is based on a model that has
neurophysiological correlates in primates and has successfully explained
most of vergence dynamic data. Our experiments and analysis show that
fixation disparity can arise due to the asymmetry in the dynamics of the
convergence and divergence pathways when stimulated by a distributed
disparity code. Further, our explanation remains consistent with the non-
leaky position integration property of the vergence system; we show that
neural leakage is not necessary to explain steady-state errors in the vergence
system and presumably in other sensorimotor systems driven by distributed
sensory coding.

Appendix

We have used the same equations (and terminology) that were presented
in earlier work describing the neural network model of the vergence sys-
tem (Patel et. al., 1997) to show the relationship between the experimental
findings of Rashbass and Westheimer (1961) and the functions describing
the transformation from the output of disparity encoders to the output of
velocity cells in the model. A convention used in this appendix is that the
equations with capital letters belong to the previous article (Patel et. al.,
1997) and those with lowercase letters are described in this article. We con-
sider the situation in which the input (or disparity) is clamped (fixed) in
time and the output (vergence angle) is temporally changing.

Since the input signal is fixed in time, we can consider the disparity en-
coders to be in a steady state. The activity of the disparity encoders (eq A.5 in
the previous article) will be represented by a temporally fixed and spatially
distributed activity. For simplicity, we chose a binary rectangular spread.
Thus:

fDC(xDC,d) =
{

1 if ds − n
2 ≤ d ≤ ds + n

2
0 otherwise

}
, (a.1)
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where d is the index of the disparity encoder cell representing disparity d, ds
is the average stimulus disparity, and n is the total spread of activity across
disparity encoder cells.

The output of the disparity encoder cells feeds into the convergence and
divergence velocity cells via the positive synaptic weights wd,v⇑ and wd,v⇓.
The dynamics of the velocity cells is governed by equations A.6 and A.7,
which are rewritten below:

Ks
dxv⇑

dt
= −Av⇑xv⇑ +

d=0∑
2N

wd,v⇑ fDC(xDC, d) (a.2)

Ks
dxv⇓

dt
= −Av⇓xv⇓ +

0∑
d=−2N

wd,v⇓ fDC(xDC, d), (a.3)

where xv⇑(xv⇓) is the activity of the convergence (divergence) velocity cell,
Av⇑(Av⇓) is the decay constant of the convergence (divergence) velocity
cell, −2N ≤ d ≤ 2N, fDC is the firing-rate function of the disparity encoder
cells (same form as equation A.1; also see equation a.13), and Ks is a scaling
constant.

The position cells integrate the outputs of the velocity cells according to
the following shunting push-pull equations (same as equation A.8):

Ks
dxp⇑

dt
= (Bp⇑ − xp⇑

)
wv⇑,p⇑ fv⇑(xv⇑)− (Dp⇑ + xp⇑)wv⇓,p⇑ fv⇓(xv⇓) (a.4)

Ks
dxp⇓

dt
= (Bp⇓ − xp⇓

)
wv⇓,p⇓ fv⇓(xv⇓)− (Dp⇓ + xp⇓)wv⇑,p⇓ fv⇑(xv⇑), (a.5)

where, xp⇑(xp⇓) is the activity of the convergence (divergence) position cell,
Bp⇑(Bp⇓) is the upper bound for the activity of convergence (divergence)
position cell, wv⇑,p⇑(wv⇑,p⇓) and wv⇓,p⇑(wv⇓,p⇓) are the synaptic weights
between the output of the convergence and divergence velocity cells and the
input to the convergence (divergence) position cells respectively, fv⇑( fv⇓)
is the firing-rate function of the convergence (divergence) velocity cell, and
−Dp⇑(−Dp⇓) is the lower bound for the activity of convergence (divergence)
position cell. Notice the absence of the passive decay term due to which the
integration by the position cells is nonleaky.

Finally, the output of the position cells drives the motoneurons and the
plant of the left and the right eye whose dynamics are described by the
following equations (same as equation A.17 but without the last two terms):

Kp
dθL

dt
= − 1

τL θ
L + KL

p⇑ fp⇑(xp⇑)− KL
p⇓ fp⇓(xp⇓) (a.6)

Kp
dθR

dt
= − 1

τ
θR + KR

p⇓ fp⇓(xp⇓)− KR
p⇑ fp⇓(xp⇑), (a.7)
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where θL(θR) is the position of the left (eye) eye in the head, τL(τR) is the
time constant of the motoneuron and the plant system of the left (right)
eye, KL

p⇑(K
R
p⇑) and KL

p⇓(K
R
p⇓) are the gain of the convergence and divergence

position cells for the left (right) eye, fp⇑( fp⇓) is the firing rate function of
the convergence (divergence) position cell, and Kp is a scaling constant. For
simplicity, we have ignored the signals from the velocity overdrive circuit.

Now let us consider Rashbass and Westheimer’s (1961) experiment. In
this experiment, the input (or disparity) was clamped (help constant) and
the vergence velocity was measured. The finding is that within a small range
of disparities (at least±2 degrees, see Figure 22 in Rashbass and Westheimer,
1961), the eye velocity (which remained almost constant in time) is a linear
function of the clamped disparity. Let us apply this finding to our model.
The dependent variable in the experiment is the vergence velocity (Vrw) and
is defined by

dVrw

dt
= d

dt
(θL − θR). (a.8)

The finding is that

dVrw

dt
= Krwds, (a.9)

where Krw is a constant estimated to be about 10 degrees per second per
degree of disparity and ds is the average target disparity. By substituting
equations a.6 and a.7 in equation a.8, we have

Krwds = 1
Kp

{
− 1
τL θ

L + 1
τR θ

R +
(

KL
p⇑ + KR

p⇑
)

fp⇑(xp⇑)

−
(

KL
p⇓ + KR

p⇓
)

fp⇓(xp⇓)
}
.

By using KL
p⇑ + KR

p⇑ = 1p⇑, KL
p⇓ + KR

p⇓ = 1p⇓ and τL = τR = τ in the
previous equation, we have

Krwds = 1
Kp

{
− 1
τ
(θL − θR)+1p⇑ fp⇑(xp⇑)−1p⇓ fp⇓(xp⇓)

}
. (a.10)

Differentiating both sides of equation a.10 and using Rashbass and Wes-
theimer’s results from equation a.9 give:

0 = − 1
τ

Krwds +1p⇑ f
′
p⇑(xp⇑)ẋp⇑ −1p⇓ f

′
p⇓(xp⇓)ẋp⇓ (a.11)

Because, the target used in Rashbass and Westheimer’s experiments was
very small (0.08 degree wide), the results obtained in their experiments
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are likely due to the case where ds ≥ n
2 . In this case, the disparity spread

remains on either the convergence or the divergence side, and only one of
the two sensory pathways is activated. For definiteness, assume only the
convergence pathway is activated. Starting from equation a.11, we have:

1
τ

Krwds = 1p⇑ f
′
p⇑(xp⇑)−1p⇓ f

′
p⇓(xp⇓)ẋp⇓. (a.12)

The function f ′p⇑ was chosen to have the form as (same as equation A.1):

f (x) =


0 if x, 0
αx if 0 ≤ xÄ
αÄ if ≤ x

 , (a.13)

where 0,Ä, and α are constants determining the threshold, saturation, and
gain of the firing function respectively.

Because the position cells are active, xp⇑ > 0 and xp⇓ > 0, and because
the experiment is conducted for small disparities and measurements are
made before the eye plant system saturates, we have 0 ≤ xp⇑ ≤ Ä and 0 ≤
xp⇓ ≤ Ä, fp⇑(xp⇑) = αp⇑xp⇑ and fp⇓(xp⇓) = αp⇓xp⇓, and f ′p⇑(xp⇑) = αp⇑ and
f ′p⇓(xp⇓) = αp⇓. Further, if we assume that the convergence and divergence
position cells have identical parameters (see Table B1 in Patel et al., 1997)
and the plant characteristics are identical downstream from the position
cells for convergence and divergence (see Table 3 in Patel et al., 1997), then
αp⇑ = αp⇓ = αp and 1p⇑ = 1p⇓ = 1. Therefore equation a.12 becomes

1
τ

Krwds = 1αp
{
ẋp⇑ − ẋp⇓

}
. (a.14)

By substituting equations a.4 and a.5 in equation a.14, we have

KsKrwds

τ1p⇑αp⇑
= (Bp⇑ − xp⇑)wv⇑,p⇑ fv⇑(xv⇑)− (Dp⇑ + xp⇑)wv⇓,p⇑ fv⇓(xv⇓)

− (Bp⇓ − xp⇓)wv⇓,p⇓ fv⇓(xv⇓)
+ (Dp⇓ + xp⇓)wv⇑,p⇓ fv⇑(xv⇑). (a.15)

Because only convergence sensory pathway is active, fv⇓(xv⇓) = 0. Also,
as mentioned earlier, because the data in Rashbass and Westheimer’s study
were collected for a small range of eye positions (from initial convergence
of 1.7 degrees) or only the initial portion (within the delay period) of the
vergence eye movement, we have xp⇑ << Bp⇑ and xp⇓ << Bp⇓. In addition,
because the velocity cell was above threshold and not saturated, fv⇑(xv⇑) =
αv⇑xv⇑. Further, because the convergence and divergence position cells are
assumed to have the same parameters, Bp⇑ = Bp⇓ = B and Dp⇑ = Dp⇓ = D.
In our dynamic model, the upper and the lower limits of activation for the



Vergence Dynamics Predict Fixation Disparity 1521

position cells are symmetric around 0, thus, (see Table B1 in Patel et al., 1997).
The push-pull connectivity between the position cells and the velocity cells
is also symmetric; thus, wv⇑,p⇑ = wv⇑,p⇓ = wv⇓,p⇑ = wv⇓,p⇓ = wv,p. Note
that wv⇑,p⇓ and wv⇓,p⇑ in Table 2 in Patel et al., 1997 have a negative sign. The
sign indicates only the inhibitory nature of the synapses, and for the purpose
of using it with the equations A.8 and A.16 and a.15, only the magnitude
should be used. The signs for wv⇑,p⇓ and wv⇓,p⇑ were inadvertently left in
Table 2 in Patel et al., 1997. Therefore, equation a.15 can be rewritten as

KsKrwds

τ1αp
= 2Bwv,pαv⇑xv⇑, (a.16)

which yields

xv⇑ = KsKrwds

2τ1αpBwv,pαv
. (a.17)

Consider now the equations for the velocity cells. Because during Rash-
bass and Westheimer’s experiments, disparity was held constant and be-
cause the time constant of the velocity cell is much shorter than the circuits
following it (position integration and plant), the velocity cell can be consid-
ered to be in steady state. By letting ẋv⇑ = 0 in equation a.2, we obtain

xv⇑ = 1
Av⇑

2N∑
0

wd,v⇑ fDC(xDC,d). (a.18)

To simply our analysis and given the dense packing of disparity encoder
cells, instead of using the discrete index d for disparity, we will use a con-
tinuous variable z. Positive (negative) values of z represent convergence
(divergence) disparities. Equation a.18 becomes

xv⇑ = 1
Av⇑

∫ 2N

0
wv⇑(z) fDC(xDC(z))dz. (a.19)

Now, given that the disparity is encoded by a binary rectangular distri-
bution (see equation a.1), we obtain

xv⇑ = 1
Av⇑

∫ ds+ n
2

ds− n
2

wv⇑(z)dz. (a.20)

By combining equations A.17 and A.20 we get

Cds =
∫ ds+ n

2

ds− n
2

wv⇑(z)dz, (a.21)
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where

C = KsKrwAv⇑
2τ1αpBwv,pαv

(a.22)

Equation A.21 holds for |ds| ≤∼ 2 degrees. From this equation, we can
write

wv⇑(z) = C
n

z. (a.23)

Thus, we show that Rashbass and Westheimer’s result implies a linear
relationship between the weights from the disparity encoders to the velocity
cells and disparity. Note that the relationship described in equation a.23 is
obtained for ds ≥ n

2 and is assumed to hold for 0 < ds <
n
2 .
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